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The structure of the orientational wetting layer of semiflexible polymers in the vicinity of a hard-wall
surface is investigated based on an inhomogeneous free energy functional. A mean-field approximation
is used for the system of semiflexible polymers obeying the Saito-Takahashi-Yunoki description and in-
teracting via repulsive interaction of the Onsager type. The distribution function of the polymers near
the hard wall is computed by using a spherical-harmonic expansion. A surface phase transition from a
uniaxial phase to a partial wetting, biaxial state is shown to exist before a second-order wetting phase

transition to a complete wetting nematic phase.

PACS number(s): 64.70.Md, 68.10.Cr, 61.30.Cz

In a recent paper [1], we established a mean-field
theory at the molecular level for an inhomogeneous lyo-
tropic system of semiflexible liquid-crystalline polymers,
based on the Saito-Takahashi-Yunoki description for
semiflexible polymers [2] and the Onsager approximation
for the segment-segment interaction potential [3]. This
formalism is adopted here to study the phenomena of sur-
face orientational wetting transition, a topic that has
been the target of intensive theoretical, experimental and
computer-simulation investigation in recent years [4,5].
Furthermore, the general problem of polymer chains at
the substrate surface itself has been considered an impor-
tant topic for both practical and fundamental reasons [6].

The various forms of the Landau—de Gennes theory
[7] have predicted that several possible orientational wet-
ting structures exist at a liquid-crystal surface, including
a dry (D) or partial wetting structure, a prewetting (P)
structure, and a wetting (W) structure of the nematic lay-
er [5,8,9,10]. To understand the phenomena fundamen-
tally, it is desirable to produce all three states by con-
structing and studying a theory starting from the micro-
scopic level. The problem of the interface between a
structureless hard wall and a liquid-crystal bulk system,
such as hard rods modeled by a closed-form approxima-
tion, has been the subject of several studies for this pur-
pose [11,12,13]. In many respects, the behavior of
liquid-crystalline polymers is qualitatively similar to that
of, say, hard-rod molecules [14,15,16]. In this paper, we
present the result of our investigation of the structure of
the nematic polymer-hard-wall interface.

The model used here is basically the same as the one
we used to study the isotropic-nematic interface of
liquid-crystalline polymers [1]. Consider a spatially inho-
mogeneous system composed of N semiflexible polymer
chains, each having a total contour length L, diameter D,
and Kuhn length a. We recall that in the limiting case of
L /a >>1, the distribution function of polymer segments
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is independent of the contour position, except for the seg-
ments at the ends of polymers [14,15,16]. We define
p(r,u) as the number density of the polymer segments
and ¢(r,u) as the distribution function of the polymer
ends, having the position specified by r and the orienta-
tion specified by the unit vector u. The requirement of
the continuity of a polymer chain implies

p(r,u)=g(r,—u)g(r,u) , (1)

a condition that can be shown more rigorously [1].

Generally, polymer segments may interact through a
potential that is repulsive in short range and attractive
otherwise. The simplest way to model the effect of the
repulsive interaction is to approximate it by the excluded
volume interaction within the second virial approxima-
tion [3]. The effect of the attraction is neglected here, al-
though it could also be taken into account [14]. The
derivation of the mean-field grand thermodynamical po-
tential function Q) is given elsewhere [1], and it may be
written as

Q
kT

=— fdrdu w(r,u)p(r,u)

2
+%fdrdudu’p(r,u)p(r,u’)iuXu’I
—u [drdup(r,u), )

where p is the chemical potential in units of k3 T. The in-
tegral involving the function w(r,u) represents the
configurational entropy and the second integral
represents the excluded-volume interaction between seg-
ments of the polymer chains within the second virial ap-
proximation. The function w(r,u) is generally referred to
as the mean field of the system, and is determined by the
condition of self-consistency. For semiflexible polymer
chains in the limit L /a >>1, the self-consistent condition
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can be written as [1,17]

L V‘z,q(r,u) u-V,q(r,u)
w(r,u)=— .
a gq(r,u)

g(r,u) ®
Therefore, the potential ) is uniquely determined by the
function g(r,u), in view of the functional relations in Egs.
(1) and (3). Recently, a thermodynamic function of the
same structure has also been developed by Morse and
Fredrickson to study the effect of persistency of polymer
chains on the interfacial properties of a binary polymer
mixture [18].

Figure 1 shows the coordinate system used in this pa-
per. The u, and y, and the u, and z axes lie on the wall
surface, while the u, and x axes point along the normal
to the wall surface, toward the molecules. In the case of
a flat wall surface, g(r,u) depends on three variables
only, x, 6, and ¢, where u is represented by the angles
(0,¢). In order to determine the stable structure of the
bulk-wall interface, {) must be minimized with respect to
g(r,u).

In determining the surface structure, the potential felt
by the surface molecules plays an important role. For a
structureless substrate, the theory must lead to the result
that no polymer segments may penetrate into the hard
wall. Because of this, all interior polymer segments at
x =0 must lie on the wall surface. Then, the boundary
condition for the distribution function may be written as
p(x=0,u)=0 for any u that satisfies X-u70, where X is
the unit vector along the x axis. A naive guess for the
boundary condition of g(x,u) at x =0 would be to re-
quire the g function to satisfy a similar equation. A mo-
ment of reflection would indicate that the boundary con-
dition for g should be fixed differently. Physically, we
should allow the polymer end segments to exist at x =07
when these ends point in the direction u satisfying
X-u <0; this implies that the boundary condition for the
end distribution function may be assumed to have the
form

q(x=0,u)=0 when X-u>0. (4)

Note that when X-u <0, the g function is nonzero and is
determined by the equilibrium condition. Mathematical-
ly, the boundary condition in Eq. (4) is sufficient to yield
the desired boundary condition for p, according to the re-
lation between p and g in Eq. (1).

X

FIG. 1. The coordinate system used in this paper. The wall
surface is located at x =0 and the normal is along the x direc-
tion.
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The boundary condition at x = oo reflects the proper-
ties of the bulk phase, especially the number density,
C,=p,alD, where aLD has been used to rescale the
number density p,. For an isotropic bulk phase, which
corresponds to w =0, the chemical potential ; and the
distribution function g are given by [1]

u=mC, /2 (5)
and
g(x=oc0,u)=(C, /4m)17? . (6)

In the following, u is used as a control parameter for the
study of the interfacial behavior. Our main interest here
is the parameter region from u=0 to pu=puy, where
Uin=20.495 is the chemical potential at which the bulk
isotropic-nematic phase transition takes place [16].

The current setting of the coordinates is suitable for
the representation of surface profiles when g(r,u) obeys
the symmetry properties:

q(r,u)=q(r,u,,y)=q(r,u¢,z) , (7)

where u, =(6, —¢) and u, =(7—6,¢). The rotational
y z

symmetry about the u, axis, however, is not introduced
in order to account for the possible occurrence of biaxial
states.

To solve the minimization condition for , we intro-
duce a spherical-harmonic expansion for the function
g(x,u) at a given x. The coefficient g,,,(x) of the
(I,m)th-order spherical harmonic in the expansion is as-
sumed to be a function of the spatial variable x, which is
discretized in the numerical calculation. Since the func-
tions ¢, ,,(x) approach g; ,,(0) very sharply when x goes
to 0, it is desirable to divide the x space unevenly to have
more representative points near the fast-varying region.
In practice we use a spatial variable & defined by

E=1(1—e"™/%){tanh[(x —d)/2a]+3} , ®)

which allows us to discretize the interval [0,2] of & into
N¢ equally spaced slabs. The second factor in Eq. (8) is
introduced to account for the possible occurrence of the
prewetting-bulk interface at a distance d from the wall.
The differential term in Eq. (3) may be rewritten as
9q /3x =(d&/dx )(9q /3E), while the derivative of g with
respect to £ is approximated by using a finite difference
scheme. In the actual numerical computation, N ¢ is tak-
en to be 160, and the spherical-harmonic expansion is
truncated so that terms with / > 10 are neglected.

We use the function g, ,,(x) to compute the number
density profile C(x), the order-parameter profile S(x),
the interface tension o, etc. The spatial variation for the
number density can be found by integrating p(x,u) over
the spherical polar variables,

C(x)=aLD [dup(x,u) . ©)

The properties of the orientational ordering are charac-
terized by the statistical average of the tensor L(3uu—1I)
[4,5],
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1
$Gx)=7 [ duGuu—Dp(x,u) / fduptx,u) . (10

With this definition and under the symmetry conditions
given by Eq. (7), the ordering matrix is already diagonal-
ized,

Sl(x) 0 0
S,x) 0 |. (11)
0 0  Sx)

Moreover, since the ordering matrix is traceless by
definition, only two of the three diagonal elements are in-
dependent. The thickness of the wetting layer can be
characterized by various measurements. Here we consid-
er the definition of the following three quantities:

AC=fo‘”x[c,,—C(x)]dx/fo""[c,,—C(x)]dx . (12a)
Alzfo“’xsl(x)dx/fo""sl(x)dx ,
and

A3=fowa3(x)dx/f0wS3(x)dx .

For p <pgy, the stable bulk phase is an isotropic one.
Depending on the value of u, the model in Eq. (2) results
in different types of orientational wetting structures. For
small u up to u* =~ 16, we found that the only stable struc-
ture is the partial-wetting (D) structure. The orienta-
tional ordering is completely induced by the hard-wall
potential, which has a rotational symmetry about the x
axis. The distribution function p(x,u) has a pancake
shape in the u space, starting out at x =0 as a disk with
zero thickness and growing into a perfect sphere near the
bulk isotropic state at x = . The ordering matrix §(x)
has the prototypical form of a uniaxial state, .S;(x)
=8,(x)=—5,(x)/2, where S,(x) rises rapidly from —1
at the wall to O at the bulk, as displayed in Fig. 2(a). The
number density profile in Fig. 2(b) is shown to increase
monotonically from the surface value C(x =0)=0 to the
bulk value C(x = o« )=C,. The thickness of the D layer
is measured by the A functions displayed in Fig. 3(a),
which shows that A’s are generally small compared to the
Kuhn length a, a characteristic of the D state. For small
u, we find that the profiles S,(x),C(x)/C, and A(u) are
only weakly dependent on u.

The recent Monte Carlo simulation for polymers on a
surface [19] has shown similar behavior. The structure is
also produced by using other theoretical approaches for
polymers on a surface [6]. It is interesting to directly
compare the density and orientational profiles between
Fig. 2 and those of hard rods in Ref. [12]. The cusplike
behavior of £(x) and C(x) for hard rods at the distance
x =L /2, for which the rigidity of the rods is assumed to
be responsible, disappears in the flexible limit studied
here. The first derivative of the S;(x) curve in Fig. 2(a)
diverges at x =0, while S;(x) for hard rods [12] rises
slowly from —1. It seems that the stiffness of the poly-
mers plays an important role in the modification of the
surface structure; this phenomenon may only be under-
stood by studying semiflexible polymers when a finite ra-

(12b)

(12¢)
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FIG. 2. (a) Order-parameter profile S;(x) and (b) density
profile C(x ) near the wall surface for selected p. The curves la-
beled 1, 2, 3, 4, and 5 correspond to u=4, 8, 12, 16, and 20, re-
spectively, where the state corresponding to the =20 curve is
metastable.

FIG. 3. (a) Surface width and (b) surface tension as functions
of u. The square, diamond, and circle symbols represent the
functions A,, A;, and A of the P state, respectively. The cross
and the triangle symbols represent the functions A; and Ac of
the D state, respectively. The inset of (a) displays the asymptot-
ic behavior near ppy. The inset of (b) is a blowup of the area as-
sociated with the transition from the D state to the P state.
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FIG. 4. (a) Order-parameter profiles S, (x) (lower part), S3(x)
(upper part) and (b) density profile C(x) near the wall surface
for selected u. The curves labeled 1, 2, 3, 4, 5, 6, 7, and 8 corre-
spond to the P state of u=16.5, 17.5, 18.5, 19.5, 20.3, 204,
20.48, and 20.49, respectively. The curve labeled 9 corresponds
to F'IN=20' 495.

tio L /a is considered [see the Appendix of Ref. (1)].

For p in between u* and u;y, another surface struc-
ture, i.e., the prewetting (P) structure, exists. The P
structure has no uniaxial symmetry, so we need two in-
dependent parameters, S;(x) and S;(x), to describe it.
The orientational ordering is produced by both the hard-
wall potential and the spontaneous ordering tendency
preferred by the second term in (2). The distribution
function p(x,u) has a cigarlike shape with the long prin-
ciple axis pointing in the z (or y) direction, starting out at
x =0 as a disk with zero thickness elongated in the z
direction, and gradually evolving into a perfect sphere for
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the bulk phase at x =c. In the intermediate region of
the P state, the ordering matrix is almost uniaxial in the
u, (or u,) direction. Figure 4(a) shows the functions
S;(x) and S,(x) for the P state when pu* <pu <p. Un-
like the D state, the density profile of the P state in Fig.
4(b) shows an enhancement near the wall followed by a
weak depletion. The enhancement is a precursor to the
appearance of a complete wetting layer whose average
nematic density is higher than the bulk isotropic values
C,. The depletion seems to be a necessary phenomenon
in order to initiate the enhancement near the stability
limit p*. The surface width in Fig. 3(a) for the P state in-
creases dramatically from that at u* and diverges at uyy.
The value of u* =16 can be roughly estimated by study-
ing the A functions, although a more precise estimation
may be obtained by using bifurcation analysis for the
biaxiality associated with the order parameter [12].

The actual surface phase transition from the D state to
the P state takes place when the surface tension of the P
state becomes smaller than that of the D state, as seen
from Fig. 3(b). The phase transition is accompanied by a
discontinuity in the first derivative of the surface tension
o, and thus is first order. The location of the transition is
roughly estimated to be at ppp=17.1, which might
change considerably in view of the precision required to
determine ppp in Fig. 3(b). The prewetting transition was
first discussed by Sheng [8] and latter reported by others
[9,10].

A semilog plot of the A functions in the insert of Fig.
3(a) indicates that the A functions diverge as In(upy—p).
As shown in Fig. 4, when u approaches pyy, the P layer is
further broadened and eventually undergoes a complete
wetting transition to a nematic layer. Note that the den-
sity enhancement near the well of the W state still
remains as a remnant of the enhancement in the P state.

To conclude, our simple model of semiflexible poly-
mers at the wall-polymer surface shows three surface
orientational wetting states: the partial wetting state, the
prewetting state, and the complete wetting state.
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FIG. 1. The coordinate system used in this paper. The wall
surface is located at x =0 and the normal is along the x direc-
tion.



